Human farnesyl pyrophosphate synthase is allosterically inhibited by its own product
نویسندگان
چکیده
Farnesyl pyrophosphate synthase (FPPS) is an enzyme of the mevalonate pathway and a well-established therapeutic target. Recent research has focused around a newly identified druggable pocket near the enzyme's active site. Pharmacological exploitation of this pocket is deemed promising; however, its natural biological function, if any, is yet unknown. Here we report that the product of FPPS, farnesyl pyrophosphate (FPP), can bind to this pocket and lock the enzyme in an inactive state. The Kd for this binding is 5-6 μM, within a catalytically relevant range. These results indicate that FPPS activity is sensitive to the product concentration. Kinetic analysis shows that the enzyme is inhibited through FPP accumulation. Having a specific physiological effector, FPPS is a bona fide allosteric enzyme. This allostery offers an exquisite mechanism for controlling prenyl pyrophosphate levels in vivo and thus contributes an additional layer of regulation to the mevalonate pathway.
منابع مشابه
The crystal structure of human geranylgeranyl pyrophosphate synthase reveals a novel hexameric arrangement and inhibitory product binding.
Modification of GTPases with isoprenoid molecules derived from geranylgeranyl pyrophosphate or farnesyl pyrophosphate is an essential requisite for cellular signaling pathways. The synthesis of these isoprenoids proceeds in mammals through the mevalonate pathway, and the final steps in the synthesis are catalyzed by the related enzymes farnesyl pyrophosphate synthase and geranylgeranyl pyrophos...
متن کاملBisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase.
We report the cloning and sequencing of a gene encoding the farnesyl pyrophosphate synthase of Trypanosoma cruzi. The protein (T. cruzi farnesyl pyrophosphate synthase, TcFPPS) is an attractive target for drug development, since the growth of T. cruzi is inhibited by carbocation transition state/reactive intermediate analogs of its substrates, the nitrogen-containing bisphosphonates currently i...
متن کاملSuppression of CYP2B induction by alendronate-mediated farnesyl diphosphate synthase inhibition in primary cultured rat hepatocytes.
We previously reported that squalestatin 1-mediated induction of CYP2B expression is attributable to squalene synthase inhibition and accumulation of an endogenous isoprenoid(s) that is capable of activating the constitutive androstane receptor. To determine whether squalestatin 1-mediated CYP2B induction is strictly dependent on the biosynthesis of farnesyl pyrophosphate (FPP), the substrate f...
متن کاملFarnesyl diphosphate synthase; regulation of product specificity.
Farnesyl diphosphate synthase (FPPS) is a key enzyme in isoprenoid biosynthesis which supplies sesquiterpene precursors for several classes of essential metabolites including sterols, dolichols, ubiquinones and carotenoids as well as substrates for farnesylation and geranylgeranylation of proteins. It catalyzes the sequential head-to-tail condensation of two molecules of isopentenyl diphosphate...
متن کاملJ-104,871, a novel farnesyltransferase inhibitor, blocks Ras farnesylation in vivo in a farnesyl pyrophosphate-competitive manner.
Farnesylation of the activated ras oncogene product by protein farnesyltransferase (FTase) is a critical step for its oncogenic function. Because squalene synthase and FTase recruit farnesyl pyrophosphate as a common substrate, we modified squalene synthase (SS) inhibitors to develop FTase inhibitors. Among the compounds tested, a novel FTase inhibitor termed J-104,871 inhibited rat brain FTase...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017